Дмитрий Сергеевич Петухов, аспирант, Дмитрий Викторович Телышев, канд. техн. наук, доцент, ст. научный сотрудник, кафедра биомедицинских систем, Национальный исследовательский университет «МИЭТ», г. Москва, г. Зеленоград, e-mail: dmitry.spetukhov@gmail.com
1. Lima B., Mack M., Gonzalez-Stawinski G.V. Ventricular assist devices: The future is now // Trends in Cardiovascular Medicine. 2015. Vol. 25. № 4. РP. 360-369. 2. Patel C.B., Cowger J.A., Zuckermann A. A contemporary review of mechanical circulatory support // The Journal of Heart and Lung Transplantation. 2014. Vol. 33. № 7. PР. 667-674. 3. Garbade J., Barten M.J., Bittner H.B., Mohr F.-W. Heart Transplantation and Left Ventricular Assist Device Therapy: Two Comparable Options in End-Stage Heart Failure? // Clinical Cardiology. 2013. Vol. 36. № 7. РP. 378-382. 4. Schumer E.M., Black M.C., Monreal G., Slaughter M.S. Left ventricular assist devices: Current controversies and future directions // European Heart Journal. 2015. PР. 1-8. 5. Holley C.T., Harvey L., John R. Left ventricular assist devices as a bridge to cardiac transplantation // Journal of Thoracic Disease. 2014. Vol. 6. № 8. РP. 1110-1119. 6. Kyo S., Minami T., Nishimura T. et al. New era for therapeutic strategy for heart failure: Destination therapy by left ventricular assist device // Journal of Cardiology. 2012. Vol. 59. № 2. PР. 101-109. 7. Lenneman A.J., Birks E.J. Treatment strategies for myocardial recovery in heart failure // Current treatment options in cardiovascular medicine. 2014. Vol. 16. № 3. РP. 1-9. 8. AlOmari A.-H.H., Savkin A.V., Stevens M. et al. Developments in control systems for rotary left ventricular assist devices for heart failure patients: A review // Physiological Measurement. 2013. Vol. 34. № 1. PР. 1-27. 9. Bozkurt S. Physiologic outcome of varying speed rotary blood pump support algorithms: A review study // Australasian Physical & Engineering Sciences in Medicine. 2015. PP. 1-16. 10. Walter M., Heinke S., Schwandtner S., Leonhardt S. Control strategies for mechanical heart assist systems / 2012 IEEE International Conference on Control Applications (CCA) // IEEE. 2012. PP. 57-62. 11. Reyes C., Voskoboynikov N., Chorpenning K. et al. Accuracy of the HVAD Pump Flow Estimation Algorithm // ASAIO Journal. 2016. Vol. 62. № 1. РP. 15-19. 12. Chorpenning K., Brown M.C., Voskoboynikov N. et al. HeartWare controller logs a diagnostic tool and clinical management aid for the HVAD pump // ASAIO Journal. 2014. Vol. 60. № 1. РP. 115-118. 13. Cheung A., Chorpenning K., Tamez D. et al. Design Concepts and Preclinical Results of a Miniaturized HeartWare Platform: The MVAD System // Innovations. 2015. Vol. 10. № 3. PР. 150-155. 14. Kapur N., Paruchuri V., Esposito M. et al. A Novel Algorithm to Promote Native Aortic Valve Function Using the Next Generation Heartware MVAD // The Journal of Heart and Lung Transplantation. 2013. Vol. 32. № 4. Supplement. PР. 53-54. 15. Kishimoto Y., Takewa Y., Arakawa M. et al. Development of a novel drive mode to prevent aortic insufficiency during continuous-flow LVAD support by synchronizing rotational speed with heartbeat // Journal of Artificial Organs. 2013. Vol. 16. № 2. РP. 129-137. 16. Healy A.H., Koliopoulou A., Drakos S.G. et al. Patient- Controlled Conditioning for Left Ventricular Assist Device- Induced Myocardial Recovery // The Annals of Thoracic Surgery. 2015. Vol. 99. № 5. PР. 1794-1796. 17. Stanfield J.R., Selzman C.H. In Vitro Hydrodynamic Analysis of Pin and Cone Bearing Designs of the Jarvik 2000 Adult Ventricular Assist Device // Artificial Organs. 2013. Vol. 37. № 9. РP. 825-833. 18. Slaughter M.S., Pagani F.D., Rogers J.G. et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure // The Journal of Heart and Lung Transplantation. 2010. Vol. 29. № 4. PР. 1-39. 19. Pektok E., Demirozu Z.T., Arat N. et al. Remote Monitoring of Left Ventricular Assist Device Parameters After HeartAssist 5 Implantation // Artificial Organs. 2013. Vol. 37. № 9. PР. 820-825. 20. Hijikata W., Rao J., Abe S. et al. Estimating Flow Rate Using the Motor Torque in a Rotary Blood Pump // Sensors and Materials. 2015. Vol. 27. № 4. РP. 297-308. 21. Granegger M., Moscato F., Casas F. et al. Development of a Pump Flow Estimator for Rotary Blood Pumps to Enhance Monitoring of Ventricular Function // Artificial Organs. 2012. Vol. 36. № 8. РP. 691-699. 22. Bozkurt S., van Tuijl S., Schampaert S. et al. Arterial pulsatility improvement in a feedback-controlled continuous flow left ventricular assist device: An ex-vivo experimental study // Medical Engineering and Physics. 2014. Vol. 36. № 10. PР. 1288-1295. 23. Lim E., Alomari A.-H.H., Savkin A.V. et al. A Method for Control of an Implantable Rotary Blood Pump for Heart Failure Patients Using Noninvasive Measurements // Artificial Organs. 2011. Vol. 35. № 8. PР. 174-180. 24. Ng S.-C., Lim E., Mason D.G. et al. Evaluation of Suction Detection During Different Pumping States in an Implantable Rotary Blood Pump // Artificial Organs. 2013. Vol. 37. № 8. PР. 145-154. 25. Ochsner G., Amacher R., Daners M. Emulation of ventricular suction in a hybrid mock circulation / 2013 European Control Conference (ECC). 2013, July. РP. 3108-3112. 26. Wang Y., Simaan M. A Suction Detection System for Rotary Blood Pumps Based on the Lagrangian Support Vector Machine Algorithm // IEEE Journal of Biomedical and Health Informatics. 2013, May. Vol. 17. № 3. PР. 654-663. 27. Jansen-Park S.-H., Spiliopoulos S., Deng H. et al. A monitoring and physiological control system for determining aortic valve closing with a ventricular assist device // European Journal of Cardio-Thoracic Surgery. 2014. Vol. 46. № 3. РP. 356-360. 28. Granegger M., Schima H., Zimpfer D., Moscato F. Assessment of Aortic Valve Opening During Rotary Blood Pump Support Using Pump Signals // Artificial Organs. 2014. Vol. 38. № 4. PР. 290-297. 29. Ooi H.-L., Ng S.-C., Lim E. et al. Robust Aortic Valve Non- Opening Detection for Different Cardiac Conditions // Artificial Organs. 2014. Vol. 38. № 3. PР. 57-67. 30. Alonazi K., Lovell N., Dokos S. Simulation of motor current waveform as an index for aortic valve open-close condition during ventricular support / 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2014, Aug. PР. 3013-3016. 31. Hayward C., Lim C. P., Schima H. et al. Pump Speed Waveform Analysis to Detect Aortic Valve Opening in Patients on Ventricular Assist Device Support // Artificial Organs. 2015. Vol. 39. № 8. PР. 704-709. 32. Granegger M., Masetti M., Laohasurayodhin R. et al. Continuous monitoring of aortic valve opening in rotary blood pump patients // IEEE Transactions on Biomedical Engineering. 2015. № 99. РP. 1-7. 33. Ooi H.-L., Seera M., Ng S.-C. et al. Classification of implantable rotary blood pump state with class noise // IEEE Journal of Biomedical and Health Informatics. 2015. № 99. РP. 1-9. 34. Wang Y., Faragallah G., Simaan M. Detection of aortic valve dynamics in bridge to-recovery feedback control of the Left Ventricular Assist Device // European Control Conference (ECC). 2014, June. PР. 140-145. 35. Петухов Д.С., Телышев Д.В. Моделирование изменений в динамике течения крови через имплантируемый осевой насос // Медицинская техника. 2014. № 6. С. 44-47. 36. Петухов Д.С., Телышев Д.В., Селищев С.В. Метод управления роторным насосом крови для системы вспомогательного кровообращения левого желудочка сердца // Современные технологии в медицине. 2016. № 2. С. 28-33. 37. Wang Y., Koenig S.C., Slaughter M.S., Giridharan G.A. Rotary Blood Pump Control Strategy for Preventing Left Ventricular Suction // ASAIO Journal. 2015. Vol. 61. № 1. PР. 21-30. 38. Huang F., Ruan X., Fu X. Pulse-Pressure-Enhancing Controller for Better Physiologic Perfusion of Rotary Blood Pumps Based on Speed Modulation // ASAIO Journal. 2014. Vol. 60. № 3. РP. 269-279. 39. Amacher R., Asprion J., Ochsner G. et al. Numerical optimal control of turbo dynamic ventricular assist devices // Bioengineering. 2013. Vol. 1. № 1. РP. 22-46. 40. Bakouri M., Salamonsen R., Savkin A. et al. Feasible approach to control the operation of implantable rotary blood pumps for heart failure patients / 9th Asian Control Conference (ASCC). 2013, June. PР. 1-6. 41. Bakouri M., Salamonsen R., Savkin A. et al. Physiological control of implantable rotary blood pumps for heart failure patients / 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013, July. РP. 675-678. 42. Bakouri M.A., Salamonsen R.F., Savkin A.V. et al. A Sliding Mode- Based Starling-Like Controller for Implantable Rotary Blood Pumps // Artificial Organs. 2014. Vol. 38. № 7. PР. 587-593. 43. Salamonsen R.F., Lim E., Gaddum N. et al. Theoretical Foundations of a Starling-Like Controller for Rotary Blood Pumps // Artificial Organs. 2012. Vol. 36. № 9. PР. 787-796. 44. Mansouri M., Salamonsen R.F., Lim E. et al. Preload-Based Starling-Like Control for Rotary Blood Pumps: Numerical Comparison with Pulsatility Control and Constant Speed Operation // PLoS ONE. 2015. Vol. 10. № 4. РP. 1-16. 45. Ochsner G., Amacher R., Wilhelm M.J. et al. A Physiological Controller for Turbodynamic Ventricular Assist Devices Based on a Measurement of the Left Ventricular Volume // Artificial Organs. 2014. Vol. 38. № 7. РP. 527-538. 46. Dual S.A., Ochsner G., Meboldt M., Schmid D.M. Clinical calibration of a volume sensor based physiological controller for ventricular assist device / Abstracts from the XLII Congress of the European Society for Artificial Organs (ESAO) // ESAO. 2015. P. 404. 47. Pauls J.P., Stevens M.C., Bartnikowski N. et al. Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study // Annals of Biomedical Engineering. 2016. PР. 1-11. 48. Pennings K., van Tuijl S., van de Vosse F. N. et al. Estimation of left ventricular pressure with the pump as «sensor» in patients with a continuous flow LVAD // The International Journal of Artificial Organs. 2015. Vol. 38. № 8. РP. 433-443.