Архив номеров
Медицинская Техника / №3, 2016 / с. 8-11

Алгоритмы управления роторными аппаратами вспомогательного кровообращения

                                

Д.С. Петухов, Д.В. Телышев


Аннотация

В данной статье приведен обзор систем, методов и алгоритмов управления для аппаратов вспомогательного кровообращения, опубликованных в литературе за последние пять лет. Дано кратное описание систем управления, используемых в клинической практике. Рассмотрены алгоритмы оценки и регулировки, управления режимами работы, физиологического управления аппаратами вспомогательного кровообращения роторного типа.


Сведения об авторах

Дмитрий Сергеевич Петухов, аспирант,
Дмитрий Викторович Телышев, канд. техн. наук, доцент, ст. научный сотрудник, кафедра биомедицинских систем, Национальный исследовательский университет «МИЭТ», г. Москва, г. Зеленоград,
e-mail: dmitry.spetukhov@gmail.com

Список литературы

1. Lima B., Mack M., Gonzalez-Stawinski G.V. Ventricular assist devices: The future is now // Trends in Cardiovascular Medicine. 2015. Vol. 25. № 4. РP. 360-369.
2. Patel C.B., Cowger J.A., Zuckermann A. A contemporary review of mechanical circulatory support // The Journal of Heart and Lung Transplantation. 2014. Vol. 33. № 7. PР. 667-674.
3. Garbade J., Barten M.J., Bittner H.B., Mohr F.-W. Heart Transplantation and Left Ventricular Assist Device Therapy: Two Comparable Options in End-Stage Heart Failure? // Clinical Cardiology. 2013. Vol. 36. № 7. РP. 378-382.
4. Schumer E.M., Black M.C., Monreal G., Slaughter M.S. Left ventricular assist devices: Current controversies and future directions // European Heart Journal. 2015. PР. 1-8.
5. Holley C.T., Harvey L., John R. Left ventricular assist devices as a bridge to cardiac transplantation // Journal of Thoracic Disease. 2014. Vol. 6. № 8. РP. 1110-1119.
6. Kyo S., Minami T., Nishimura T. et al. New era for therapeutic strategy for heart failure: Destination therapy by left ventricular assist device // Journal of Cardiology. 2012. Vol. 59. № 2. PР. 101-109.
7. Lenneman A.J., Birks E.J. Treatment strategies for myocardial recovery in heart failure // Current treatment options in cardiovascular medicine. 2014. Vol. 16. № 3. РP. 1-9.
8. AlOmari A.-H.H., Savkin A.V., Stevens M. et al. Developments in control systems for rotary left ventricular assist devices for heart failure patients: A review // Physiological Measurement. 2013. Vol. 34. № 1. PР. 1-27.
9. Bozkurt S. Physiologic outcome of varying speed rotary blood pump support algorithms: A review study // Australasian Physical & Engineering Sciences in Medicine. 2015. PP. 1-16.
10. Walter M., Heinke S., Schwandtner S., Leonhardt S. Control strategies for mechanical heart assist systems / 2012 IEEE International Conference on Control Applications (CCA) // IEEE. 2012. PP. 57-62.
11. Reyes C., Voskoboynikov N., Chorpenning K. et al. Accuracy of the HVAD Pump Flow Estimation Algorithm // ASAIO Journal. 2016. Vol. 62. № 1. РP. 15-19.
12. Chorpenning K., Brown M.C., Voskoboynikov N. et al. HeartWare controller logs a diagnostic tool and clinical management aid for the HVAD pump // ASAIO Journal. 2014. Vol. 60. № 1. РP. 115-118.
13. Cheung A., Chorpenning K., Tamez D. et al. Design Concepts and Preclinical Results of a Miniaturized HeartWare Platform: The MVAD System // Innovations. 2015. Vol. 10. № 3. PР. 150-155.
14. Kapur N., Paruchuri V., Esposito M. et al. A Novel Algorithm to Promote Native Aortic Valve Function Using the Next Generation Heartware MVAD // The Journal of Heart and Lung Transplantation. 2013. Vol. 32. № 4. Supplement. PР. 53-54.
15. Kishimoto Y., Takewa Y., Arakawa M. et al. Development of a novel drive mode to prevent aortic insufficiency during continuous-flow LVAD support by synchronizing rotational speed with heartbeat // Journal of Artificial Organs. 2013. Vol. 16. № 2. РP. 129-137.
16. Healy A.H., Koliopoulou A., Drakos S.G. et al. Patient- Controlled Conditioning for Left Ventricular Assist Device- Induced Myocardial Recovery // The Annals of Thoracic Surgery. 2015. Vol. 99. № 5. PР. 1794-1796.
17. Stanfield J.R., Selzman C.H. In Vitro Hydrodynamic Analysis of Pin and Cone Bearing Designs of the Jarvik 2000 Adult Ventricular Assist Device // Artificial Organs. 2013. Vol. 37. № 9. РP. 825-833.
18. Slaughter M.S., Pagani F.D., Rogers J.G. et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure // The Journal of Heart and Lung Transplantation. 2010. Vol. 29. № 4. PР. 1-39.
19. Pektok E., Demirozu Z.T., Arat N. et al. Remote Monitoring of Left Ventricular Assist Device Parameters After HeartAssist 5 Implantation // Artificial Organs. 2013. Vol. 37. № 9. PР. 820-825.
20. Hijikata W., Rao J., Abe S. et al. Estimating Flow Rate Using the Motor Torque in a Rotary Blood Pump // Sensors and Materials. 2015. Vol. 27. № 4. РP. 297-308.
21. Granegger M., Moscato F., Casas F. et al. Development of a Pump Flow Estimator for Rotary Blood Pumps to Enhance Monitoring of Ventricular Function // Artificial Organs. 2012. Vol. 36. № 8. РP. 691-699.
22. Bozkurt S., van Tuijl S., Schampaert S. et al. Arterial pulsatility improvement in a feedback-controlled continuous flow left ventricular assist device: An ex-vivo experimental study // Medical Engineering and Physics. 2014. Vol. 36. № 10. PР. 1288-1295.
23. Lim E., Alomari A.-H.H., Savkin A.V. et al. A Method for Control of an Implantable Rotary Blood Pump for Heart Failure Patients Using Noninvasive Measurements // Artificial Organs. 2011. Vol. 35. № 8. PР. 174-180.
24. Ng S.-C., Lim E., Mason D.G. et al. Evaluation of Suction Detection During Different Pumping States in an Implantable Rotary Blood Pump // Artificial Organs. 2013. Vol. 37. № 8. PР. 145-154.
25. Ochsner G., Amacher R., Daners M. Emulation of ventricular suction in a hybrid mock circulation / 2013 European Control Conference (ECC). 2013, July. РP. 3108-3112.
26. Wang Y., Simaan M. A Suction Detection System for Rotary Blood Pumps Based on the Lagrangian Support Vector Machine Algorithm // IEEE Journal of Biomedical and Health Informatics. 2013, May. Vol. 17. № 3. PР. 654-663.
27. Jansen-Park S.-H., Spiliopoulos S., Deng H. et al. A monitoring and physiological control system for determining aortic valve closing with a ventricular assist device // European Journal of Cardio-Thoracic Surgery. 2014. Vol. 46. № 3. РP. 356-360.
28. Granegger M., Schima H., Zimpfer D., Moscato F. Assessment of Aortic Valve Opening During Rotary Blood Pump Support Using Pump Signals // Artificial Organs. 2014. Vol. 38. № 4. PР. 290-297.
29. Ooi H.-L., Ng S.-C., Lim E. et al. Robust Aortic Valve Non- Opening Detection for Different Cardiac Conditions // Artificial Organs. 2014. Vol. 38. № 3. PР. 57-67.
30. Alonazi K., Lovell N., Dokos S. Simulation of motor current waveform as an index for aortic valve open-close condition during ventricular support / 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2014, Aug. PР. 3013-3016.
31. Hayward C., Lim C. P., Schima H. et al. Pump Speed Waveform Analysis to Detect Aortic Valve Opening in Patients on Ventricular Assist Device Support // Artificial Organs. 2015. Vol. 39. № 8. PР. 704-709.
32. Granegger M., Masetti M., Laohasurayodhin R. et al. Continuous monitoring of aortic valve opening in rotary blood pump patients // IEEE Transactions on Biomedical Engineering. 2015. № 99. РP. 1-7.
33. Ooi H.-L., Seera M., Ng S.-C. et al. Classification of implantable rotary blood pump state with class noise // IEEE Journal of Biomedical and Health Informatics. 2015. № 99. РP. 1-9.
34. Wang Y., Faragallah G., Simaan M. Detection of aortic valve dynamics in bridge to-recovery feedback control of the Left Ventricular Assist Device // European Control Conference (ECC). 2014, June. PР. 140-145.
35. Петухов Д.С., Телышев Д.В. Моделирование изменений в динамике течения крови через имплантируемый осевой насос // Медицинская техника. 2014. № 6. С. 44-47.
36. Петухов Д.С., Телышев Д.В., Селищев С.В. Метод управления роторным насосом крови для системы вспомогательного кровообращения левого желудочка сердца // Современные технологии в медицине. 2016. № 2. С. 28-33.
37. Wang Y., Koenig S.C., Slaughter M.S., Giridharan G.A. Rotary Blood Pump Control Strategy for Preventing Left Ventricular Suction // ASAIO Journal. 2015. Vol. 61. № 1. PР. 21-30.
38. Huang F., Ruan X., Fu X. Pulse-Pressure-Enhancing Controller for Better Physiologic Perfusion of Rotary Blood Pumps Based on Speed Modulation // ASAIO Journal. 2014. Vol. 60. № 3. РP. 269-279.
39. Amacher R., Asprion J., Ochsner G. et al. Numerical optimal control of turbo dynamic ventricular assist devices // Bioengineering. 2013. Vol. 1. № 1. РP. 22-46.
40. Bakouri M., Salamonsen R., Savkin A. et al. Feasible approach to control the operation of implantable rotary blood pumps for heart failure patients / 9th Asian Control Conference (ASCC). 2013, June. PР. 1-6.
41. Bakouri M., Salamonsen R., Savkin A. et al. Physiological control of implantable rotary blood pumps for heart failure patients / 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013, July. РP. 675-678.
42. Bakouri M.A., Salamonsen R.F., Savkin A.V. et al. A Sliding Mode- Based Starling-Like Controller for Implantable Rotary Blood Pumps // Artificial Organs. 2014. Vol. 38. № 7. PР. 587-593.
43. Salamonsen R.F., Lim E., Gaddum N. et al. Theoretical Foundations of a Starling-Like Controller for Rotary Blood Pumps // Artificial Organs. 2012. Vol. 36. № 9. PР. 787-796.
44. Mansouri M., Salamonsen R.F., Lim E. et al. Preload-Based Starling-Like Control for Rotary Blood Pumps: Numerical Comparison with Pulsatility Control and Constant Speed Operation // PLoS ONE. 2015. Vol. 10. № 4. РP. 1-16.
45. Ochsner G., Amacher R., Wilhelm M.J. et al. A Physiological Controller for Turbodynamic Ventricular Assist Devices Based on a Measurement of the Left Ventricular Volume // Artificial Organs. 2014. Vol. 38. № 7. РP. 527-538.
46. Dual S.A., Ochsner G., Meboldt M., Schmid D.M. Clinical calibration of a volume sensor based physiological controller for ventricular assist device / Abstracts from the XLII Congress of the European Society for Artificial Organs (ESAO) // ESAO. 2015. P. 404.
47. Pauls J.P., Stevens M.C., Bartnikowski N. et al. Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study // Annals of Biomedical Engineering. 2016. PР. 1-11.
48. Pennings K., van Tuijl S., van de Vosse F. N. et al. Estimation of left ventricular pressure with the pump as «sensor» in patients with a continuous flow LVAD // The International Journal of Artificial Organs. 2015. Vol. 38. № 8. РP. 433-443.