Архив номеров
Медицинская Техника / Медицинская техника №3, 2018 / с. 43-47

Перспективные методы энергообеспечения имплантируемых устройств

                                

О.В. Горский


Аннотация

В данном обзоре рассмотрены вопросы специфики энергообеспечения имплантируемых устройств (ИУ), среди которых: срок службы элементов питания и уровень энергопотребления современных устройств, допустимые массогабаритные характеристики ИУ, приоритетные области имплантации. Сравниваются известные способы передачи и преобразования энергии, для которых определены диапазоны возможных значений удельной мощности: беспроводная передача энергии – 0,1…100 мВт/см2, преобразование энергии специфических для биологического объекта источников – 0,0001…0,1 мВт/см2, изотопные источники питания – ниже 0,0001 мВт/см2.


Сведения об авторах

Олег Владимирович Горский, ведущий инженер, научно-исследовательский отдел биотехнических проблем, ФГАОУ ВО «Санкт-Петербургский государственный университет аэрокосмического приборостроения», г. Санкт-Петербург,

Список литературы

1. Caldara M., Nodari B., Re V., Bonandrini B. Miniaturized Blood Pressure Telemetry System with RFID Interface // Electronics. 2016. Vol. 5. P. 51.
2. Zeng F.-G., Rebscher S., Harrison W., Sun X., Feng H. Cochlear implants: System design, integration, and evaluation // IEEE Rev. Biomed. Eng. 2008. Vol. 1. PP. 115-142.
3. Mestais C.S., Charvet G., Sauter-Starace F., Foerster M., Ratel D., Benabid A.L. WIMAGINE: Wireless 64-channel ECoG recording implant for long term clinical applications // IEEE Trans. Neural Syst. Rehabil. Eng. 2015. Vol. 23. № 1. PP. 10-21.
4. Borton D.A., Yin M., Aceros J., Nurmikko A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates // J. Neural Eng. 2013. Vol. 10. № 2.
5. Medtronic Micra Clinician Manual / https:// www.accessdata.fda.gov/cdrh_docs/pdf15/P150033d.pdf.
6. Uddin K., Perera S., Widanage W.D., Somerville L., Marco J. Characterising Lithium-Ion Battery Degradation through the Identification and Tracking of Electrochemical Battery Model Parameters // Batteries. 2016. Vol. 2. P. 13.
7. Medical Power Sources / https://integer.net/product/medical- power-sources-crm/.
8. Xu B., Oudalov A., Ulbig A., Andersson G., Kirschen D.S. Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment // IEEE Transactions on Smart Grid. 2016. № 99. P. 1.
9. Li J., Murphy E., Winnick J., Kohl P.A. The effects of pulse on cycling characteristics of commercial lithium-ion batteries // J. Power Sources. 2001. Vol. 102. № 1. PP. 302-309.
10. Chang W.-Y. The State of Charge Estimating Methods for Battery: A Review // ISRN Applied Mathematics. 2013. Vol. 2013. P. 7.
11. Schuler B., Rettich A., Vogel J., Gassmann M., Arras M. Optimized surgical techniques and postoperative care improve survival rates and permit accurate telemetric recording in exercising mice // BMC Vet. Res. 2009. Vol. 5. P. 28.
12. Helwig B.G., Blaha M.D. and Leon L.R. Effect of Intraperitoneal Radiotelemetry Instrumentation on Voluntary Wheel Running and Surgical Recovery in Mice // J. Am. Assoc. Lab. Anim. Sci. 2012. Vol. 51. № 5. PP. 600-608.
13. Руководство по экспериментальному (доклиническому) изучению новых фармакологических средств / Под общ. ред. члена-кор. РАМН, профессора Р.У. Хабриева. 2-изд., перераб. и доп. – М.: ОАО «Издательство «Медицина», 2005. 832 с.
14. DSI Implantable Telemetry brochure / http://www.datasci.com/.
15. Medtronic Activa RC Model 37612 Multi-program rechargeable neurostimulator Implant Manual / http:// manuals.medtronic.com.
16. Boston Scientific Precision Spinal Cord Stimulator System Clinician Manual / https://www.bostonscientific.com/.
17. Rajappan K. Permanent pacemaker implantation technique. Part I // Heart. 2009. Vol. 95. PP. 259-264.
18. Ревишвили А.Ш. и др. Аритмология: клинические рекомендации по проведению электрофизиологических исследований, катетерной абляции и применению имплантируемых антиаритмических устройств. – М.: ГЭОТАР-Медиа, 2010. 304 с.
19. Kotsakou M., Kioumis I., Lazaridis G. Pacemaker insertion // Ann. Transl. Med. 2015. Vol. 3. № 3. P. 42.
20. Moons C.P.H., Hermans K., Remie R., Duchateau L., Odberg F.O. Intraperitoneal versus subcutaneous telemetry devices in young Mongolian gerbils (Meriones unguiculatus) // Lab. Anim. 2007. Vol. 41. № 2. PP. 262-271.
21. Ahn D., Hong S. Wireless Power Transmission with Self- Regulated Output Voltage for Biomedical Implant // IEEE Transactionson Industrial Electronics. 2014. Vol. 61. № 5. PP. 2225-2235.
22. Artan N., Vanjani Hitesh, Vashist Gurudath, Fu Zhen, Bhakthavatsala Santosh, Ludvig Nandor, Medveczky Geza, Chao H. A high-performance transcutaneous battery charger for medical implants / 2010 Conference Proceedings // IEEE Engineering in Medicine & Biology Society. 2010. Vol. 1. PP. 1581-1584.
23. Jegadeesan R., Nag S., Agarwal K., Thakor N.V., Yong-Xin G. Enabling wireless powering and telemetry for peripheral nerve implants // IEEE J. Biomed. Health Inf. 2015. Vol. 19. № 3. PP. 958-970.
24. Young D.J., Cong P., Suster M.A., Damaser M. Implantable wireless battery recharging system for bladder pressure chronic monitoring // Lab. Chip. 2015. Vol. 15. PP. 4338-4347.
25. Sodagar A., Amiri P. Capacitive coupling for power and data telemetry to implantable biomedical microsystems / NER ’09. 4th International IEEE/EMBS Conference. 2009. PP. 411-414.
26. Liu X., Berger J.L., Ogirala A., Mickle M.H. A touch probe method of operating an implantable rfid tag for orthopedic implant identification // Biomedical Circuits and Systems, IEEE Transactions. 2013. Vol. 7. № 3. PP. 236-242.
27. Chow E.Y., Chlebowski A.L., Chakraborty S., Chappell W.J., Irazoqui P.P. Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent // IEEE Trans. Biomed. Eng. 2010. Vol. 57. № 6. PP. 1487-1496.
28. Ho J.S., Yeh A.J., Neofytou E., Kim S., Tanabe Y., Patlolla B., Beygui R. E., Poon A.S.Y. Wireless power transfer to deep-tissue microimplants // Proc. Nat. Acad. Sci. USA. 2014. Vol. 111. № 22. PP. 7974-7979.
29. Liu C., Guo Y.-X., Sun H., Xiao S. Design and safety considerations of an implantable rectenna for far-field wireless power transfer // IEEE Trans. Antennas Propag. 2014. Vol. 62. № 11. PP. 5798-5806.
30. Murakawa K., Kobayashi M., Nakamura O., Kawata S.A. Wireless near-infrared energy system for medical implants // IEEE Eng. Med. Biol. Mag. 1999. Vol. 18. PP. 70-72.
31. Goto K., Nakagawa T., Nakamura O., Kawata S. An implantable power supply with an optically rechargeable lithium battery // IEEE Trans. Biomed. Eng. 2001. Vol. 48. PP. 830-833.
32. Liu H., Zhao T., Jiang W., Jia R., Niu D., Qiu G., Fan L., Li X., Liu W., Chen B., Shi Y., Yin L., Lu B. Flexible Battery-Less Bioelectronic Implants: Wireless Powering and Manipulation by Near-Infrared Light // Adv. Funct. Mater. 2015. Vol. 25. P. 7071.
33. Mazzilli F., Peisino M., Mitouassiwou R., Cotte B., Thoppay P., Lafon C., Favre P., Meurville E., Dehollain C. In-Vitro Platform to Study Ultrasound as Source for Wireless Energy Transfer and Communication for Implanted Medical Devices // Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010. Vol. 2010. PP. 3751-3755.
34. Ozeri S., Shmilovitz D., Singer S., Wang C. Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter // Ultrasonics. 2010. Vol. 50. PP. 666-674.
35. Maleki T., Cao N., Song S.H., Kao C., Ko S.C.A., Ziaie B. An ultrasonically powered implantable micro-oxygen generator (IMOG) // IEEE Trans. Biomed. Eng. 2011. Vol. 58. № 11. PP. 3104-3111.
36. Dagdeviren C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111. № 5. PP. 1927-1932.
37. Tashiro R., Kabei N., Katayama K., Ishizuka Y., Tsuboi F., Tsuchiya K. Development of an electrostatic generator that harnesses the motion of a living body // Int. J. Jpn. Soc. Mechan. Eng. 2000. Vol. 43. PP. 916-922.
38. Miao P., Mitcheson P., Holmes A., Yeatman E., Green T., Stark B. MEMS inertial power generators for biomedical applications // Microsyst. Technol. 2006. Vol. 12. № 10-11. PP. 1079-1083.
39. Goto H., Sugiura T., Harada Y., Kazui T. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source // Med. Biol. Eng. Comput. 1999. Vol. 37. № 1. PP. 377-380.
40. Stark I., Stordeur M. New micro thermoelectric devices based on bismuth telluride-type thin solid films / In Proc. 18th Int. Conf. Thermoelectric. 1999. PP. 465-472.
41. Strasser M., Aigner R., Lauterbach C., Sturm T.F., Franosch M., Wachutka G. Micromachined CMOS thermoelectric generators as on-chip power supply // Sensors Actuators A. Phys. 2004. Vol. 114. № 2-3. PP. 362-370.
42. Chen G., Ghaed H., Haque R., Wieckowski M., Yejoong Kim, Gyouho Kim, Fick D., Daeyeon Kim, Mingoo Seok, Wise K., Blaauw D., Sylvester D. A cubic-millimeter energy-autonomous wireless intraocular pressure monitor / IEEE International Solid-State Circuits Conference. 2011. PP. 310-312.
43. Drake R., Kusserow B., Messinger S., Matsuda S. A tissue implantable fuel cell power supply // ASAIO J. 1970. Vol. 16. № 1. PP. 199-205.
44. Weidlich E., Richter G., von Sturm F., Rao J.R. Animal experiments with biogalvanic and biofuel cells // Biomaterials, Medical Devices, and Artificial Organs. 1976. № 3-4. PP. 227-306.
45. Rapoport B.I., Kedzierski J.T., Sarpeshkar R. A glucose fuel cell for implantable brain-machine interfaces // PLoS ONE. 2012. Vol. 7. № 6.
46. Dong K., Jia B., Yu C., Dong W., Du F., Liu H. Microbial fuel cell as power supply for implantable medical devices: A novel configuration design for simulating colonic environment // Biosens. Bioelectron. 2013. Vol. 41. PP. 916-919.
47. Mercier P.P., Lysaght A.C., Bandyopadhyay S., Chandrakasan A.P., Stankovic K.M. Energy extraction from the biologic battery in the inner ear // Nat. Biotechnol. 2012. Vol. 30. № 12. PP. 1240-1243.
48. Widetronix / http://www.widetronix.com/.
49. City Labs / http://www.citylabs.net/.
50. Drews J., Fehrmann G., Staub R., Wolf R. Primary batteries for implantable pacemakers and defibrillators // J. Power Sour. 2001. Vol. 97. PP. 747-749.
51. Mallela V.S., Ilankumaran V., Rao N.S. Trends in cardiac pacemaker batteries // Indian Pacing Electrophysiol. J. 2004. Vol. 4. P. 201.
52. RamRakhyani A.K., Lazzi G. Multicoil Telemetry System for Compensation of Coil Misalignment Effects in Implantable Systems // IEEE Antennas and Wireless Propagation Letters. 2012. Vol. 11. PP. 1675-1678.
53. Qusba A., RamRakhyani A.K., So J., Hayes G.J., Dickey M.D., Lazzi G. On the Design of Microfluidic Implant Coil for Flexible Telemetry System // IEEE Sensors Journal. 2014. Vol. 14. № 4. PP. 1074-1080.
54. Denisov A., Yeatman E. Ultrasonic vs. Inductive power delivery for miniature Biomedical Implants / 2010 International Conference on Body Sensor Networks. 2010. PP. 84-89.
55. Jegadeesan R., Guo Y.-X., Minkyu J. Electric near-field coupling for wireless power transfer in biomedical applications / In Proc. IEEE MTTS Int. Microw. Workshop Ser. RF Wireless Technol. Biomed. Healthcare Appl. 2013. PP. 1-3.